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The principal component (PC) approach offers compressions of an image sequence into fewer
images and noise suppressing filters. Multiple MR images of the same tomographic slice ob-
tained with different acquisition parameters (i.e., with different T'5,7T g, and flip angles), time
sequences of images in nuclear medicine, and cardiac ultrasound image sequences are examples
of such input image sets. In this paper noise relationships of original and linearly transformed
image sequences in general, and specifically of original, PC, and PC-filtered images are dis-
cussed. As the spinoff, it introduces locally weighted PC transforms and filters, nonlinear PC’s,
and a single-image based filter for suppression of noise. Examples illustrate increased percepti-
bility of anatomical/functional structures in PC images and PC-filtered images, including ex-
traction of physiological functional information by PC loading curves. Generally, the more
correlated the original images are, the more effective is the PC approach.

INTRODUCTION

In order to obtain an MR image with the *best” descrip-
tion of anatomical details and/or discrimination of the tis-
sues of interest, one may request the “‘optimal” pulse se-
quence and timing.'” However, the published “optimal”
parameters are rarely based on in vivo measurements, and
when they are available for the tissue types under consid-
eration their usefulness is limited by their variability from
case to case.%’ Their derivation also assumes that the tis-
sues of interest are homogeneous and that their relaxation
times 7'y and T, are known. The determination of the
optimal scanning parameters is impossible without a priori
knowledge of the tissues and of their MR characteristics.
Given the frequently exploratory character of MRI, this
knowledge is often unavailable, and one may search for a
lesion that was not considered when the pulse sequence
was selected. Additional images obtained by varying acqui-
sition parameters increase the probability of capturing ad-
ditional diagnostic information by the resulting image set.
It is important to remember that the diagnostic informa-
tion may be related not only to proton density, 7'y and T,
but also to chemical shift, signal alteration by contrast
medium, degree of voxel mixing, and averaging of these
parameters, stochastic properties of voxel neighborhoods
(for example, multidimensional texture), flow, etc. How-
ever, this information may be difficult to extract visually,
especially if the image set is composed of a large number of
images, the images are noisy, mutually highly correlated,
and contain overlapping structures. The images may also
be difficult to view because of unwanted distributions (his-
tograms) of pixel intensities. In another situation, a phys-
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iological process may affect only very slightly a time se-
quence of images, making it difficult to study this process
by visual observation of the original images. In both cases,
a suitable transformation of the input image set into very
few (two or three) synthetic images may make the diag-
nostically important information more perceivable.

The synthetic images of image sequences can be sepa-
rated into four main categories: (1) Functional images of a
physical parameter of a physiological process, for example,
time of arrival of bolus, or phase and amplitude images in
cardiac nuclear medicine; (2) images of “pure” physical
parameter, for example, Ty, T, and proton density MR
images;® (3) the synthetic MR images that emulate origi-
nal images acquired with different acquisition
parameters;“"’10 and (4) images obtained by subspace
methods.!! Depending on the method used, these images
can be further separated into three groups: (a) images
based on unsupervised methods [for example, principal
component (PC),' 16 cluster,'!” and factor? images],
(b) images derived by supervised methods (for example,
eigenimages,'*?° “maximal contrast,”'>® and classifica-
tion images“); and (c) those based on the combination of
these two methods (for example, “blended” images'*?).

It can be shown that artificial neural networks can be
used to generate synthetic images similar to those pro-
duced by PC, cluster analysis, factor analysis, or discrim-
inant analysis approach, respectively.”***

Restrictions on the acquisition time often result in very
noisy images. (Sequences of planar radionuclide images or
sequences of cardiac ulirasound images; similarly, in an
MR spin-echo image sequence that includes combinations
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of long and short T'zs and T'zs, the images with long T'g
and short Ty suffer disproportionally more by the noise. )
These images are usually mutually correlated, and it is
therefore desirable to exploit the presence of the common
information to increase their signal-to-noise ratio (S/N)
and/or to transform them into a smaller set of uncorrelated
images without a significant loss of information. In this pa-
per, we discuss the PC approach toward these two goals
and add to the previous studies'>1*1924% the noise analy-
sis in synthetic images produced by linear transform, in
general, and by PC transform, in particular (one has to
acknowledge the detail analysis®® of error propagation in
eigenimages by Soltanian-Zadeh et al.). Further, we intro-
duce nonlinear, locally weighted, and single image based
PC transforms and filters, respectively (see Appendix B).
Results are iflustrated by examples taken from MRI and
nuclear medicine.

Il. NOISE PROPAGATION BY LINEAR
TRANSFORMS OF IMAGE SEQUENCES

A. The image transform

Let {F}=[%(1),% (2),....7 (n)] be the set of ac-
quired image matrices .% (k) of the same view or of the
same tomographic slice. The vector Wy
= [F (1) 7 (2)y»nZ (n),,]7 is the input pixel inten-
sity vector at column x and row y. The pixel intensity p in
the synthetic image obtained by a linear transform is

(1)

where s is usually determined by display requirements (as-
sume s=0 unless specified otherwise). We distinguish the
pixel intensity p from the actual display brightness, which
is a function of p(w) and is determined by the display
hardware and by the operator. Without a loss of generality,
we assume

p(w)=Zew+s=eTw+s,

(2)

The synthetic pixel intensity is then given by the projection
of the signal vector w on the unit transformation vector e.

The relations derived in this section are applicable to
(1) principal component images,“""s’lg’zo (2) factor anal-
ysis images,'*!>*"?® (3) discriminant function images ob-
tained either by the normal mixture cluster
analysisls’""g’zo or by the discriminant analysis,15 (4)
eigenimages,m"20 and to (5) maximum contrast
images,lg’20 as they are all examples of images generated by
linear transforms (1).

ele=1.

B. The noise of the input image

Let us assume that the signal vector w has a determin-
istic component r and a random noise component h:

(3)

We will consider two types of signal averaging: (1) the
local mean over “unlimited” and independent repetitions
of a measurement of the pixel intensity ({ )pym); and (2)
the sample mean over the spatial region of interest
(ROL{ )Ygror)- When both averagings take place (the glo-

w=r-+h.
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bal mean) we use notation {{ )). The first type yields an
estimate of a local “expected value,” and the second one
provides a mean over a finite number of pixels of a single
acquisition. We assume that the signal noise is additive and
uncorrelated, and with zero mean:

<h>RMmO’
(hihj>RM=6ij<hi2>RM’
2= (hh )y

We will discuss two noise models in detail and demarcate
them by offset text blocks in italics.
The noise of the first kind is characterized by

2h=0'h21, (5)

where 1 is the (n,n) identity matrix. The MR spine-echo
image set'™ can be used as an example of this kind of noise
[when using images with different Ty and T, the pixel
intensities of input images should be scaled first by a factor
proportional to (Ts/Ty)]. In radionuclide images the noise
Jfollows the Poisson statistics (the noise of the second kind):

(Zp)a=r;. (6)

To bypass the problems of the observer’s perception of
contrast and the properties of the display, we will study the
contrast in the space of the original and synthetic signals.

The global covariance matrices of the input pixel inten-
sities and their components are defined by

(Zp) = (((w— (w) ) (w;— (Kw)))))
= (((w;— (rror) (W;~ (rj)ro1) ) )5
) iy= (7= L)) (= L))
= ((r;— (rdron) (r;— {rdro1) Yr0OI 5 (M

(Z) = (= (A )) (h;— (A ))) )y = ((Z) ijdror»

where i,j =1,2,...,n. Obviously,

(4)

2=2y+2y. (8)

In the case of the noise of the first kind,

Iy=0,1, (9)
and in the case of the noise of the second kind,

(EN)ij=6ij<<wi)>=6ij<ri>ROI' (10)

(The global variance of the components of the pixel inten-
sities in the kth input image are the diagonal elements,

Ouit=CEDw 0= Cadm ont=CEx) . (11)

The standard deviation o, ; can be used as the measure of
the “global contrast” in the kth input image, and o, /0,
as the measure of C/N. These measures can be evaluated
using (8): the signal variance ,,;> can be estimated from
(7) and the noise variance U,,,kz can be estimated, for ex-
ample, by the analysis of variance (ANOVA) on input
image sets acquired by repeated acquisitions.

However, in the case of the noise of the first kind a more
practical way is to estimate cr,,’k2 Jfrom pixel intensities 3
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outside the scanned body (air or a homogeneous object
scanned together with the patient). In the case of the noise of
the second kind,

ot = wp)) = (W) ror- (12)

C. The noise of the synthetic image

The local variance apz of pixel intensity in the synthetic
image is

0, ={(p(W)— @ (W))rm)rm- (13)
After simplification by (1), (3), and (4),

a2 ={((e"h)D g, (14)
ie.,

0,,2: 2 eiz(zh)ii- (15)

i=1
In the case of the noise of the first kind, (15) reduces to
(16)

i.e., the noise variances in the synthetic and original images
are the same, and in the case of the noise of the second kind,

(17)

2 _ 2
Up —-Eei Vi

The global standard deviations of the synthetic signal and
of its deterministic and noise components, respectively, are

o?1=e'Ze, oPy=e"Te, oPy=eTSye, (18)
and are mutually related by
0'12=0'M2+0N2. (19)

From (2), (4), (7), and (18) it follows that the extreme
noise variances of input and synthetic images are the same:

max 02N=ma'x< (hiz) ))
(e) ()
min o?y=min{{(h?)).
(e) (9
From the definition of principal components (see below),
it follows that the smallest eigenvalue A, of the covariance
matrix of the input pixel intensities is the smallest possibie
variance of the synthetic signal:

(20)

’ln"_"n?ei)n<[P(W)—(P(W))ROIP)ROI- (21)

From (19) to (21), it follows that the smallest expected
eigenvalue can be used as an upper estimate of the noise
 variance oy

An)rM= 11(12)11(0;,2)1101201\/’2 == eﬂTzNen>Ir(lei)n oy’ (22)

In the case of the noise of the first kind the noise variance
oes not depend on the transformation vector e and

A rmzoy’=at (23)

sually, the eigenvalue A, is close to the expected ecigen-
alue (1,)ry and may be used to replace it in (22) and
23), and often
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(Adrmin o, (24)

D. The contrast of the synthetic image

The relations derived above can be used to compare
contrast (and C/N) of original and synthetic images.
For example, in the case of noise of the first kind the ratio

oM/ O = (op/oN)/ (O /o) (25)
becomes
oM/, =(op/ON)/ (T, 1/Oy)
=[(eTZe—02)/ (02 —a) 1V, (26)
and satisfies the inequality
(e"2s0/0,,2) *Say/o, ST (eTZe—1,)/
(0w’ —Aa) 1", (27)

SoreTXes 0,x> The difference of the global contrasts of the
synthetic image and of the kth original image is easier to
calculate and does not require the knowledge of noise vari-
ances:

(28)

However, this is not true in the case of the noise of the second
kind:

2 2__ T 2
OM —Op) =€ Ze—0,,".

oyt — 0, P =e"2e—0, 2+ () ror—2e; H{rdror -
(29)

Usually one may substitute
(30)

and the difference of the contrasts can be calculated directly
Jfrom the input images and the transformation vector e.

(rdror={w)ror,

Ili. PRINCIPAL COMPONENT IMAGES

For simplicity, let us assume that there is only one unit
transformation vector e; that results in a synthetic image
with maximal variance,

Ay=max{(p(w) — (p(W))ror) ) rorx

€]

(31)

(disregard the obvious opposite-sign solution —e;).

In the case of the noise of the first kind, S/N in this
synthetic image is obviously greater or equal to S/N of any
of the input images, and one intuitively expects a greater
information content as well. This inequality is not guaran-
teed in the case of the noise of the second kind, however, we
have never observed its violation in clinical data.

The image transformation process may be expanded by
searching for the transformation vector e, in the (n—1)-
dimensional subspace that is orthogonal to the vector e,
and so on, ..., until all » transformation vectors are found.
This may be viewed as a rotation of the original coordinate
system into a new one with axes parallel to {e,,e,,e;,...,
e,}, and yielding the corresponding synthetic image set.
Usually the input images are strongly correlated, and con-
sequently the last images of this new set are extremely
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noisy, their variances of pixel intensities tend to be only
slightly higher than the noise variance oy and contain
very little or no useful information. Consequently, the orig-
inal image set can be replaced by the smaller set of the first
few synthetic images without a significant loss of informa-
tion. '

The process described above is known as the principal
component analysis,'"162%% the transformation vectors
e;, i=1,2,...n, are the eigenvectors of the covariance ma-
trix of the input pixel intensities (calculated over the ROI
sample), and the eigenvalues A, are the corresponding vari-
ances of the PCs. They are related to the signal variance by

07| o= R~ A (32)

In the case of the noise of the first kind the expression for
global C/N in the ith PC image reduces fto

op/ox=[ ({A)rm/04>) — 1172

> [((A)rw/ Anyrm) — 112 (33)

The PC image transform can be implemented in the fol-
lowing steps.

(1) Define the input data: Example: PC MRI images of
the brain. Select the input image set (for example, eight
spin-echo images of a tomographic slice: TR =500, 2000
ms, TE=20, 40, 60, and 80 ms), and the pixels (ROI)
whose intensities w will be used to derive the PC analysis
transform. Pixels outside the brain are of no interest, and
their presence in the ROI is usually undesirable, as they
may influence the PC transform at the expense of the brain
data. The ROI does not have to contain all brain pixels:
often enhanced structures of a brain subregion can be ob-
tained by choosing this subregion as the ROL

(2) Compute the covariance matrix C,

Ci]': ((w;— (w)ror) (wj“”' <wj>ROI)>ROI’

i,j=12,..,n, (34)
and its eigenvalues A; and eigenvectors e;.

(3) Use (1) to compute the pixels’ PC values and gen-
erate the corresponding PC images.

How many PC images should be calculated and re-
tained? What is the “essential” dimensionality of data?
There is no simple and agreed on answer.” We believe that
a number of criteria should be used in a combination: First,
we may reject the PC’s with eigenvalues lower than a spec-
ified fraction of the first eigenvalue A,. In the example
above, {(4,/4,)=0.05 is often a good threshold choice,
but may be too high in case of brain activation studies (see
Sec. V and Fig. 2). A similar condition can be applied to
the ratic of the PCs eigenvalues and to the sum of all n
eigenvalues. Further, the cutoff point can be determined by
“eyeballing” a curve fitted through points [i,vA],
i=1,2,...,n and by finding where the curve “levels off.”
Karny and Samal’! have recently proposed a Bayesian es-
timate of the number of significant PCs. While this esti-
mate is often very good, it is our opinion that it is safer to
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use it as a low estimate. Ultimately, one can calculate and
display all PC images and reject those that seem to contain
practically only noise.

The PC version of (1) can be written in matrix notation

(s=0),
p=Ew, (35)

where p=[p,,02.--p,]" is the PC pixel intensity vector.
The eigenmatrix E=[e;] is orthonormal, its rows are
eigenvectors, and its transpose is its inverse,

E'=[e/ e, ,....e,/ 1 =E, (36)
and the PCs are mutually uncorrelated:
{(pi— ProD) (2;— P rO1) YRO1=Ej4
ij=12,.n.
(37)

Examples of PC images are presented in Sec. V. Some
extensions of this approach are briefly outlined in Appen-
dix B.

IV. NOISE SUPPRESSION BY PC-BASED FILTER
A. The PC filter

From (35) and (36), it follows that the original images
can be obtained from their principal components by the
inverse transform

(38)

Let us assume that the input images are mutually corre-
lated and that the last n—m, 1 <m <n, PC components
contain practically only noise. Their contribution in the
inverse transform (38) can be eliminated by setting

w=ETp.

p;j=0, for m<j<n. (39)

From (35), (38), and (39), it follows that the resulting
filtered pixel intensity w'; in the jth image can be written as

w’=Fw,
or (40)
w =w—OPw,

where the filter F and its supplement ®=1—F are given by

m
Fiy= 2 exerjs Lji=12,..n,
k=1

(41)

®y=0,—Fy= k=§+l

eklekj.

B. The noise in the PC-filtered images

In analogy to (3), let us separate the deterministic and
noise parts of the filtered intensities,

w'=r'+h'. (42)
From (40) and (42), it follows that

h’'=Fh, (43)

r'=Fr; (44)




es
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one can obtain the relationship between the noise in the
filtered and original images from (5), (7), and {42):

(WP rm= '21 Fi 2 hHrum (45)
J:

(W)= 2 Fifoy’ (46)
-

From the definition (41) of the filter F and from the ortho-
normality of the eigenmatrix E, it follows that in the case of
the noise of the first kind, expressions (45) and (46) can be
reduced to

CRMYEUIY

=<h2>RM kgl eki2 I=<h2)RM(1— Z ekiz)]~

k=m+1
(47)

In the case of the noise of the second kind, (45) and (46)
become

n

(B p= _Zl Fifr;,
=

(48)

n
(D)= -21 fifw), (49)
j=

respectively.

One may notice that Eq. (47) includes, as a special case,
the noise decrease by averaging # images that differ only by
the noise content. In such a case only the first PC is mean-
ingful (m=1), and all components of the first eigenvector

are equal to n” Y2 and consequently the ratio
(h'2ypa/ {H*Yrm becomes 1/n, as expected.
C. The bias in the PC-filtered images

From (41) and (44), it follows that

7_11 H
¥i=ri— 2, & ri=r— z eups, I=12,..,n,
j=1 s=m+1
(50)

where the sum represents the bias caused by the rejection
of the last (n—m) PCs, and p, are the discarded determin-
istic components of PCs:

r=E’p. (51)

If a filtered image sequence is used as an input for a
quantitative analysis, for example, functional studies in nu-
clear medicine, it is imperative that only negligible infor-
mation is discarded. One may visually examine differential
images (W’ —w) together with the last (n—m) PC images,
to verify that they do not contain any significant informa-
tion, One can also compensate for the mean bias and for
the mean difference of the contrast by the corresponding
shift and scaling of the filtered pixel values, respectively.
However, we have found these corrections to be rarely
needed: in planar radionuclide image sequences of a kidney
the mean bias amounted to less than 2% of the mean pixel
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F1G. 1. Nuclear medicine: a renal study. First row: First, fourth, eighth,
and twelfth input images of a 14 image set; second row: the corresponding
filtered images (based on four PCs; third row: the first four PC images.

intensities, and in the case with the eight spin-echo MR
images the mean bias was less than 3%.

Let us look, in a simplified manner, at the PC filter in
extreme situations. First, let the ith original image differ
very much from the rest of the input image set, more ac-
curately, let | (Zp) ;| €(Zpp) s j=1,2,0i— Li+1,..,n. In
such a case there is a PC image that resembles very much
the jth image, as it will contain very litile contribution
from other images. If the PC is selected for the construc-
tion of the filter, the noise in the filtered version of the ith
image will be suppressed very little, and if too few PCs are
selected, a noticeable amount of ‘‘alien” information
“seeps” from the jth image into filtered versions of other
images. If the PC is not selected, the “filtered” version of
the ith image is a failure, because it does not resemble the
original image (the significantly lower noise in the result-
ing image can hardly be a source of satisfaction...). On the
other side, if there is a large subset of input images that are
very similar (that are mutually highly correlated), there is
probably a PC that represents these images much more
than any other PC. If this PC is selected for the filter
construction, the noise in the filtered versions of the image
subset will be significantly suppressed. However, if the PC
is not selected—which is unlikely—the filtering is not suc-
cessful, as the filtered versions of image subsets are mainly
combinations of the remaining input images.

V. EXAMPLES

The first example (Fig. 1) is a case of a dynamic radi-
onuclide kidney study. The first row contains the first,
fourth, eighth, and twelfth input images of a 14-image in-
put sequence, respectively. The second row holds the cor-
responding filtered images calculated from the first four
PCs. The third row contains the corresponding four PC
images. The first four PCs contain most of the information
and it can also be seen from the sequence of the relative
standard deviations (1,/4,), which are for i=2, 3, 4, and
14 equal to 0.407, 0.288, 0.263, and 0.215, respectively.
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FiG. 2. MRI: activation of the motor cortex. Selected two input images
out of 122 (acquired at time 57 and 64 s, respectively), originally, 64 X 64
pixels each, EPI on 1.5 T GE Signa scanner, TR = 1000 ms and TE=40
ms. The third image is the second PC image.

This is confirmed by the fact that the first four PCs contain
68% of the total signal variance (approximately 9.5% is
noise and 58.5% is deterministic), and the remaining PCs
contain 32% (approximately 23.6% is noise and 8.4% is
deterministic). The noise is responsible for at least 33% of
the total signal variance. (As we deal with noise of the
second kind, these are actually the low estimates of the
noise component based on the value of the last eigenvalue,
and the high estimates of the deterministic component of
the total signal variance, respectively.) The filtered images
demonstrate a significant increase of S/N and better delin-
eation of the kidneys. The first few original images (at the
beginning of the radionuclide uptake) differ very much
from the following images, and consequently their filtered
versions show relatively smaller increase of S/N (see the
first image in the second row).

The second example is a case of MRI brain activation
(Fig. 2): a normal subject moved and then rested the finger
for a total of 25 s, and repeated this process several times.
The input image set consists of 122 EPT images acquired
one second apart. While the MRI signal increases as a
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result of the decrease of concentration of
deoxyherrnoglobin,32 the effect of activation is masked by
the noise and is practically impossible to detect in the orig-
inal images visually. Two input images have been selected
to illustrate this point: they were acquired at time 57 and
64 s, respectively, and should show best the difference cor-
responding to the activation (they correspond tc opposite
local extreme values of the loading curve; see below).
However, the second PC image successfully extracts the
effect of activation. When the whole image ROI is used,
V(A5/A) =0.010. To improve the extraction of the activa-
tion effect, a smaller ROI centered at the activation domain
has been used and yielded ((A,/4,)=0.038. The corre-
sponding PC image is displayed as the last image in Fig,. 2,
and indicates clearly the location of the activated motor
cortex. The corresponding eigenvector is represented by
the loading curve in Fig. 3, and its periodic maxima (25 s
apart) correspond to the activation. As we can see, the
eigenvectors are helpful, not only for the construction of
PC images but also for the description of data structures, in
this case, of a physiological process. As the application of
the PC approach is practically independent on the knowl-
edge of how the activation was administered, it offers an
alternative®® investigative and imaging tool. We will dis-
cuss use of this technique for the detection, analysis, and
imaging of brain activation in detail in a separate commu-
nication.

Vi. CONCLUSIONS

We have derived statistical expressions for the propaga-
tion of noise from the original images into linear synthetic
images, and then studied these relationships in more detail
in the special case of PC images and for two noise models
that are applicable in nuclear medicine and MRI, respec-
tively. As a spinoff, we have derived a statistical expression
for the relationship between contrast in the original and
PC images. Further, we have derived statistical expressions
for the noise in PC-filtered images as a function of the filter
and of the original noise, followed by the expression for
bias of PC-filtered images.

Principal component analysis applied to a sequence of
mutually correlated images provides image data compres-
sion and offers noise suppressing filters. The resulting first
few PC images often possess a greater $/N, and the image
data structure can be perceived easier and in a small num-
ber of images. Usually, the first PC image is an “‘average”
of the input images, and the next few PC images represent
their “differences.” As the PC transform depends on the
input data (i.e., on the studied case), the PC images are
not always easy to compare from case to case. Conse-
quently, their value is mainly exploratory. When a fixed
acquisition protocol is used, a pseudo-PC transform that is
independent of individual cases may be derived { Appendix
B), and the resulting pseudo-PC images may replace the
original images in clinical applications.

The PC-filtered images do not suffer by spatial blurring,
which is typical to low pass, noise suppressing filters that
are based on a single image. The comparison of eigenvalues
of the used and of the discarded PCs usually helps to eval-
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uate the tradeoff between the noise removal and informa-
tion loss by the PC filter. In a simplified way, the more the
input images are mutually correlated, the greater noise
suppression is achieved by the PC filter: the more an input
image is “different” from other input images, the less its
noise will be suppressed by the PC filter (see the first image
in the second row of Fig. 1). Also, the smaller the number
of PCs selected to build the filter, the more will be noise
suppressed in filtered images and more of the “wrong in-
formation” may ‘“seep” from other input images into a
filtered image.

A PC filter based on a single image (Appendix B) offers
a controlled removal of noise without the explicit need to
know the noise spectrum. Its relationship to traditional
“optimal” filters is under investigation.
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APPENDIX A: STOCHASTIC TRANSFORMATION
VECTOR e

In the text above, we have assumed that the transfor-
mation vector e is well known. However, as e is often
derived from sampled noisy image data, it may have a
stochastic nature. For simplicity, it is fair to assume that
the noise component h of signal w and noise component €
of e satisfy the following conditions:

e=ey+e, (A1)
(€€, rm=5;0, 7, (A2)
(he€;)rm=0, (A3)
(hh e rm=0, (A4)
(hihje€ ) ra=58,(21) 0.7 (A5)

where eq is the deterministic part of e and aef is the vari-
ance of ¢;. Then Eqs. (16) and (20) should be modified
accordingly:

a2 ={(p(w)— (p(W))) Vrm
={((ew—egr)2)rm

X

n

= (eo?+0.,2) (Zp) it rto, 2, (A6)
i=1 i=1
n
o r=e’Se+ D, (wH)o, 2
i=1
Py=eT e+ > (rHYro10. 4 (A7)

=]

Py=eTSye+ X ((B))o, 2
=1

1
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If needed, other relations in the paper may be modified in
the same manner.

APPENDIX B: POSSIBLE EXTENSIONS OF THE PC
APPROACH

1. Nonlinear principal component images

It is sometimes advantageous to apply PC transform to
an MR image set that includes nonlinear transformations,
for example, products of the original images. The resulting
PC images often possess a greater contrast between tissue
types and reveal structures that are difficult to detect in the
original images or linear PC images. However, the correct
interpretation of these images is usually more difficult. The
noise propagation analysis is much more complex and
yields nonlinear bias terms.?

2. Locally sensitive PC transform and filter

We have assumed so far that the PC transform and filter
are defined on a *‘global” ROI, possibly on the whole im-
age. The “local” PC and PC-filtered values are then influ-
enced by “distant” image structures (pixel intensity vec-
tors). If these distant structures differ significantly from
the local one (i.e., the contribution of the distant structures
to the covariance matrix is significantly different than the
contribution of the local structure), the calculated “local”
PC and PC-filtered values become less sensitive to a local
image structure. To represent local structure adequately
the “minimal” PC set may be larger than in the case of
insignificantly different distant structures. When this insen-
sitivity becomes an important drawback, a corrective tech-
nique is needed. The result in “PC” definition changes
from pixel to pixel and comparison of PC values in mutu-
ally distant pixels may become difficult if not impossible.
Currently, we are studying corresponding techniques based
(1) on an iterative solution of the eigenproblem with lo-
cally perturbed covariance matrix, and (2) on conditional
interpolation of eigenvectors calculated on a sparse lattice,
respectively.

A simpler approach is to select a suitable, smaller ROI
that includes the structures of interest. This process is rel-
atively fast and the obtained PC images are usually more
informative in the ROI domain. In addition, they may be
used to search for similar structures in the rest of the image
(a PC loading curve is used as a ““match filter”).

3. Pseudoprincipal component images

We have observed in brain spin-echo input image sets of
Tg=2s and Tp=20, 40, 60, and 80 ms, respectively, the
first PC image to be usually very close to the average of the
input images,

€;~[0.5,0.5,0.5,0.5]7, (B1)

and the second PC image to be a “difference” of the four
input images,

ey~ [ —3/20,—1/20,17 20,3/ 20]”.

(B2)
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(This input image set has the advantage of containing
more information than the usually used clinical set, with
TR=2 s, TE=20 and 80 ms, respectively, but requires
about the same acquisition time.) The third PC image of-
ten contains only a rough silhouette of the head and noise,
and is usually diagnostically useless. In our experience, this
is consistently true for the fourth PC image. Consequently,
one may propose pseudo-PC synthetic images based on
(1), (B1), and (B2). The transform is simple, fast, and
independent of the studied case (it provides standardized
synthetic images that permit a direct comparison of indi-
viduai cases). The first pseudo-PC image has significantly
better S/N and the second pseudo-PC image has much
better tissue related contrast than the original images. Qur
experience indicates that similar pseudoeigenvectors may
be found for other clinical situations and combinations of
Tgand Tp.

4. PC filter based on a single image

A PC filter may be applied to a single image in a way
reminiscent of an early approach of DiPaola®* and
Schmidlin.? First, generate a set of “similar” input images
by shifting spatially the original image by various small
distances. For example, generate nine images: % ,.% ,,...,
F o, such that the pixel intensity v, of the kth image at
pixel [x,y] is the original intensity of the pixel displaced by
[—r,—s], ie,

v =t e 10,1, k=54r+3s.  (B3)

(Example: %, is the original image shifted by [r,s]=[1,
—1].) The PC approach yields a linear filter with (3% 3)
blurring convolution kernel. The elements of the covari-
ance matrix C in (34) are autocovariances of the original
image. (An attempt to make the PC filter locally sensitive
will make it nonstationary.) The filter provides a compro-
mise between the removal of noise and of the deterministic
component (information). The degree of this removal can
be assessed by viewing the differential image (original im-
age minus filtered image) by the discarded PC images, and
by comparison of the eigenvalues, respectively. While being
“optimal” in the PC sense—all PCs containing mainly
noise and insignificant information are discarded—it does
not require knowledge of the noise spectrum. Spectral prop-
erties of this filter and its relationship to other “optimal”
filters (for example, to the Wiener filter) is the subject of
our current investigation.

In our experience with spin-echo images of the brain,
when the first three out of nine PCs are used, the original
pixel contributes about 409—-60% (given by the central
element of the kernel) to the filtered pixel value, and when
the first six PCs are used, approximately 60%-80% comes
from the original pixel. [Noise suppression without a spa-
tial blur may be achieved in image sequences by other
transforms as well, usually by extracting “essential infor-
mation” along the third dimension (e.g., time, image
count), and then by applying the corresponding inverse
transform to this extracted data. For example, a good noise
suppression in gated cardiac studies can be achieved by a
low pass Fourier filter.* However, from the definition of

Medical Physics, Vol. 21, No. 2, February 1994

FiG. 4. Nuclear medicine: a planar kidney image. First row: original
image, and the first and the second PC images calculated on nine images
obtained by shift (see Appendix B). Second row: image filtered by the
single-image PC filter based on two, four, and six PCs, respectively.

the PCA, it follows that if a strong deterministic high-
frequency component is present in the third dimension, a
PC filter may pass it through and provide superior results.
As another example, significant noise suppression can also
be achieved®? by the artificial neural network approach.]
The situation in radionuclide images is similar. Figure 4
illustrates the filtering effect of the PC filter based on a
single image, in this case on the third image of the first row
of Fig. 1. The filters based on the first two and on the first
four PCs, respectively, suppress significantly the noise (the
first two images of the second row of Fig. 4). Because of
the character of the image the blur is not easy to notice
(which would not be the case with much less noisy MR
images). (One may further extend this technique by using
126 images created by shifting all 14 images of the time
sequence. We are in the process of evaluating this type of
filter.)
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